
The MGI lends itself to FAIR database models. FAIR (Findable-Accessible-
Interoperable-Reusable) dbs are valuable, ease-of-use computational tools
that can be applied to materials-based research. A FAIR db must organize
metadata and data structures for uniform queries and CRUD ops from
thousands of users using various clients. The organizational system used by
the Billinge Group for internal dbs is a file content management system called
Regolith. The internal dbs at the Billinge Group are growing in size and local
file system (fs) backends have HD storage limits. Additionally, the wall times of
Regolith tasks are monotonically increasing.

Use Case 1

💻 PI wants to assign projects to students quickly
💻 PI uses Regolith’s projectum adder to assign a new project
💻 The projectum adder executes instantaneously

Use Case 2

💻 PI wants to see student progress on project milestones prior to meeting
💻 PI uses the project lister in Regolith to review milestone statuses
💻 The project lister provides an instantaneous listing of all milestones
💻 PI is up to date with milestone progress at start of a meeting

💻 MongoDB Atlas is a faster, more efficient backend than the local fs

💻 MongoDB is an even better backend as dbs increase in size and scale

💻 Regolith helper commands did not execute instantaneously in the
absence of all db and collection loading calls on the MongoDB
backend

💻 Latency was introduced when initializing the Atlas cluster connection

No Code Mod (s)
(N = 20)

Mods all docs call in
projectum adder

(N = 20)

No collection load +
No database load

(N = 20)
MongoDB Atlas
Backend 3.606 s 3.390 s 2.939 s

File System Backend 11.832 s 11.654 s 2.348 s

The U.S. Federal Materials Genome Initiative (MGI) exists to accelerate the solving of new materials using informatics, advanced
modeling, experimental tools, and quantitative data. The initiative supports development of robust data infrastructures to be queried
at scale by materials science, materials engineering, and industrial research communities. The work of this project contributes to
this end by exploring a megabyte-sized example of database optimization, a prerequisite for big data-driven materials discoveries.

BACKGROUND

PROJECT SCOPE

METHODOLOGY

MONGODB ATLAS OPTIMIZES FILE CONTENT
MANAGEMENT SYSTEM PERFORMANCE

TABLE 1

CONCLUSION

Python’s cProfiler module was added to
.exe Regolith scripts. The cumulative
wall times of various subprocesses
were logged. SnakeViz generated visual
execution stacks for all function calls,
function returns, and exception events
on the chosen backend.

Wall times of Regolith on the
MongoDB and fs backends
under various conditions for
N trials.

ACKNOWLEGEMENTS

FIGURE 1

Dominic Peters, Nick Asker,
Simon Billinge, Ph.D.

Many thanks to Prof. Simon Billinge who has so freely shared his incredible
talents and wealth of knowledge in materials science with our lab daily. The
mentorship I have received from Prof. Billinge, and all members of the
Billinge Group, has afforded me invaluable skills in data science, data
management, informatics, and project management. After working in this
lab, I am thoroughly convinced that a Ph.D in Applied Research and Data
Science is my future. I would also like to thank the teams at Alexa AI
Columbia Engineering for investing in the SURE Program and for making
this experience a defining moment in my undergraduate career.

MGI

Visual
execution
stacks of the
Regolith
projectum
adder.
Encircled
subfunction
boxes
display the
proportional
wall times
associated
with
performing
the
open_dbs
function on
the (top) fs
backend and
(bottom)
MongoDB
backend.

1.14 s

31.3 s

