

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science Aging Effects on Polymer-Grafted Nanoparticle Membranes

Introduction

- Membrane-based separation can be used to capture greenhouse gases.
- Compared to distillation, membrane-based separation saves money, energy, and space.
- ⁺ The Dream⁺: To create a polymer membrane that achieves high permeability and high selectivity of gases.
- Kumar Group uses polymer-grafted nanoparticles (GNPs) to make membranes.
- Today, we are studying how aging effects, specifically temperature and the addition of free homopolymers, change the structural properties of the GNP membranes, by using in-situ annealing in the SAXS.

Key Definitions

Background

- The degree of enhancement increases as the graft chain length increases to around 90 kDa [1].
- Different gas sizes are sensitive to different molecular weights of free polymers [2].

Method

- 1. First, 1 wt.%, 5 wt.%, and 10 wt.% of 6kDa free homopolymer were mixed with a pure GNP of 0.52 ch/nm² 125 kDa. This step was repeated for the 96kDa. These mixtures are called blends.
- 2. Next, the pure GNP and the solutions were cast in Teflon molds, and were fast-evaporated.
- 3. When the membranes formed, a portion of each as-cast sample was put into the SAXS for in-situ annealing, using the Linkam Stage.

What is the SAXS?

<u>Small Angle X-Ray Scattering</u>

- These graphs contain continuous data for the same Pure GNP sample.
- The black curve at the top of the left and middle graphs is the same curve. It is the 30°C Reference curve recorded before any temperature changes.

Isabella C. Huang¹, Robert J. Tannenbaum², Sanat K. Kumar² Columbia University - Amazon SURE Summer 2022

¹Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States ²Department of Chemical Engineering, Columbia University, New York, New York 10027, United States

Results

As time increases, the structure equilibrates at the set temperature.

Signal As the temperature increases, the peaks narrow, and the membrane structure is more well-defined.

- Look at the graph outlined in blue. See how the peak becomes narrow and shifts right as the colors darken? • Darker color = Higher temperature. The colored curves represent the structure. The structure changes over time.
- Structure is defined by the highest temperature it sees.

- The vertical dotted line indicates where the 30°C Reference peak is relative to the x-axis.
- The graph on the right normalizes the last curve of the designated temperatures.

• These rainbow plots collect the last curve of every temperature up plot and every temperature down plot for each weight

• This makes it easier to visualize how the structure is different during the final moments of each temperature range.

Interparticle Spacings

- The 1-D SAXS patterns are fit to Percus-Yevick Hard Sphere Model to determine the effective radii and volume fractions.
- $R_{PY}/\Phi_{PY}^{1/3}$ ~ Total Interparticle Spacing

Conclusions

- Higher temperatures cause closer packing in the blends.
- Small wt.% decrease packing while larger wt.% swell.
- High temperature has a smaller impact on the high wt.% large molecular weight free homopolymers.
- Based on gas transport, it is possible a low wt.% of chain scission occurs in a pure GNP with a high MW_{graft} at 110°C.
- Structurally, this would make the membrane similar to a blend with a low wt.% at 80°C (of the same magnitude chain length).
- Further analysis is needed to understand the structural impact on blends at temperatures >160°C.

References

[1] Bilchak, C. R. et al. *Macromolecules* 50, 7111–7120 (2017) [2] Bilchak, C. R. et al. *ACS Nano* 14, 12, 17174–17183 (2020)

Acknowledgements

Thank you to Columbia SEAS, Amazon, the Columbia-Amazon SURE program & fellows, and the Kumar Group. Special thanks to Robert J. Tannenbaum and Sanat K. Kumar for their mentorship.

21	nce	