Cervical Loading in Patients at Low-Risk for Preterm Birth for Tied and Sliding Fetal Membranes
Miccalla Lejwa¹, Erin Louwagie¹, Lindsey Carlson², Helen Feltoovich², Timothy Hall³, Kristin Myers¹

1. Columbia University, New York, NY, United States
2. Intermountain Healthcare, Provo, UT, United States
3. University of Wisconsin, Madison, WI, United States

INTRODUCTION

- Preterm birth (PTB) globally affects 1 in 10 births [1]
- PTB is delivery before 37 weeks gestation
- Current gold standard of PTB prediction is ultrasonic measurement of cervical length [2]
- Cervical lengths of less than 25mm are considered at high-risk for PTB but has only moderate ability to predict PTB [3]
- Cervical funneling (protrusion of fetal membrane into cervical canal) also thought to increase PTB [4]
- In-silico methods must be used to study biomechanics of human pregnancy
- Normal loading of reproductive soft tissues must be characterized
- Loading patterns associated with PTB must be identified
- Fetal fibronectin (fFN) acts as adhesion between uterus and membrane and loss of fFN is linked to PTB

Hence, we are investigating cervical loading in low-risk patients for PTB to characterize normal cervical loading.

REFERENCES

RESULT & DISCUSSION

Sliding models experience higher levels of stretch
Not universal (5, 10, 13, 14, 21)

1st Principal Stretch Tied Models

1st Principal Stretch Sliding Models

As cervical stiffness increases, 1st principal stretch decreases
There appears to be no relationship between the ultrasonic parameters and principal stretch values.

METHODS

Patient Data
- Sonographer 1 visit 2 data set for:
 - Ultrasonic dimensions [5]
 - Cervical shee wave speed [7]
Cervical Stiffness Analysis
- Month 4 data [8]
- Assume linearity between shear wave speed and cervical stiffness

Parametric Patient-Specific Model and Finite Element Analysis

Finite element simulation setup and run in FEmu v1.3.0 [6]

LIMITATIONS

- Cannot compare to in-vivo loading results
- Assumed that shear wave speed to cervical stiffness was a linear relationship (data and models are limited to this assumption)
- No direct way to go from one to another
- No way to validate this assumption
- Idealized geometries (details not put into model)
- Simplified geometries outside of uterus and cervix (i.e. abdomen)
- Small data set (enough to start thinking but not enough for statistically significant solutions)

ACKNOWLEDGEMENTS

I would like to thank Dr. Kristin Myers and the Myers Soft Tissue Lab as well as my mentor Erin Louwagie for guiding me through my research experience. I would also like to thank the Amazon SURE Program and Amazon Science for funding the program and selecting me to participate in summer 2022.