RObotics And

Obstacle Avoidance Training Using Fully Immersive Virtual Reality

Rehabilitation Laboratory

Nachum Twersky, Fitsum Petros, Dr. Sunil K. Agrawal

Results

Baseline Walk

Optimized OAT Gait

Unoptimized OAT Gait

Y-Axis Tracker Data OAT003

Clear continuous stepping pattern

Uneven toe-off and heel-strike

Unclear stepping patter (stutter step)

Clear continuous gait pattern

Even toe-off and heel-strike

Even foot spacing

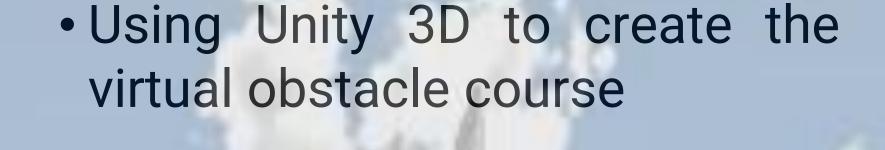
Continuous Gait

Non-Continuous gait

Uneven foot spacing

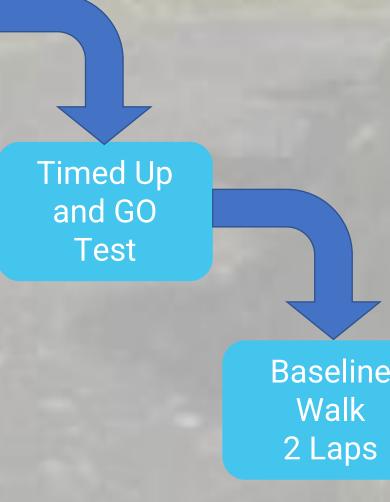
Motivation

- At least 36 million falls occur within the elderly population each year resulting in at least 32,000 deaths.
- Many of these falls are due to an improper shift of balance or trip.
- Clinicians obstacle have created avoidance trainings and tests to help elderly individuals to deal with obstacles in their path.
- obstacle current standard training is by avoidance treadmill. Which limits the subject to walking without a walking aid and walking in a straight line.



Objectives

- Create a fully immersive virtual reality obstacle avoidance exercise
- Be able to quantify improvements in gait velocity, gait variance and step optimization
- Obstacles must be maneuverable and changeable to allow for maximum flexibility


Methods

- Subjects will wear the VR headset and VR trackers on their feet
- Subjects would walk along an instrumented mat for 8 laps and step over the obstacles
- The Parameters that are being quantified and analyzed for changes are;
 - Gait Velocity
 - Gait Variance
 - Height Clearance

Balance and Mobility Tests

Obstacle Walk 8 Laps

Conclusion-Future Work

Fully immersive Virtual Reality, when paired with the trackers, can be used successfully for obstacle avoidance training

- Trackers can be used to quantify improvements and optimization in subjects walking patterns
- Use the **flexibility of design** for elderly subjects, subjects with walking aids or subjects with Parkinson's Disease
- Test effectiveness of training where the subject must turn around curves or walk in any direction

Acknowledgments and Resources

Thank you to Columbia University and Amazon for including me in this amazing program! I am so grateful for Professor Agrawal and Fitsum Petros for mentoring me through these 10 weeks. Their guidance and patience afforded me a broader perspective of engineering research.

- Guaitolini, M.; Petros, F.E.;Prado, A.; Sabatini, A.M.; Agrawal,S.K. Evaluating the Accuracy of Virtual Reality Trackers for Computing Spatiotemporal GaitParameters.Sensors2021,21, 3325.https://doi.org/10.3390/s21103325
- Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):234-40. doi: 10.1093/gerona/glq201. Epub 2010 Nov 24. PMID: 21106702.
- https://www.ncoa.org/article/get-the-facts-on-falls-prevention
- https://www.cdc.gov/falls/index.html
- Shema SR, Brozgol M, Dorfman M, Maidan I, Sharaby-Yeshayahu L, Malik-Kozuch H, Wachsler Yannai O, Giladi N, Hausdorff JM, Mirelman A. Clinical experience using a 5-week treadmill training program with virtual reality to enhance gait in an ambulatory physical therapy service. Phys Ther. 2014 Sep;94(9):1319-26. doi: 10.2522/ptj.20130305. Epub 2014 May 1. PMID: 24786944.