

Robert Ward, Charlie Summers, Haneen Mohammed, Professor Eugene Wu

Context: Database Queries

Datasets and SQL Query Input

SQL is a language that uses **Queries** to interact with and manipulate

databases

- Declarative
- high-level

SELECT p.plant, sum(f.sweet + f.sour + f.bitter) as total flavor FROM flavor profile AS f JOIN plant info AS p ON f.name = p.name GROUP BY p.plant

Query Execution

A Query engine converts it to a **Physical Plan** which is executed

on the data.

- Restructured
- Engine-specific
- Lower-level

HASH GROUP BY 4 | #0\sum(#1) PROJECTION_3 | plant \+(+(sweet, sour), bitter) HASH JOIN 2 | INNER\name=name PANDAS SCAN 0 | name\sweet\sour\bitter PANDAS_SCAN_1 | name\plant

It's difficult to assess a query's execution process

Using Provenance for Visualization

Data Provenance

Data Provenance is metadata describing the origin of data values and how it was processed throughout the execution.

Once provenance is captured, How should we convey it?

Related Implementations

LANTERN [1] – Physical Plan Execution

- Natural Language descriptions
- Physical operator explanations
- Can arrange to full sequence steps \bullet

- Abstracted to query-level operations
- Generates intermediate datasets
- Animates transformations

SQL Query Visualization Using Data Provenance

Query Plan

SELECT * FROM foo JOIN bar ON foo.x=bar.x WHERE foo.y + bar.z > 7

Overview

	foo		bar			
id	x	у	id	x	z	
0	1	2	0	2	1	
1	2	4	1	2	9	
2	3	4	2	3	3	
3	4	0	3	3	2	
			4	4	8	

SELECT * FROM foo JOIN bar ON foo.x=bar.x WHERE foo.y + bar.z > 7

PROJECTION_4_out									
	id	X	У	Z					
	1	2	4	9					
	4	4	0	8					

Operator Breakdown

HASH_JOIN_2

matches up tuples of both tables based on condition: INNER bar.x = foo.x

Physical Query Plan: verview / Operators inside fragment Fragment 2 Fragment 3 Query time contribution collapse/expa Fragment 1
ShuffleConsumer
ShuffleConsumer
SymmetricHashJoin((((\$9 = \$7) and (\$3 = \$6)) and ...) i7) and (\$3 = \$6)) and (\$2 = \$5)) and (\$1 = \$4)); \$ Detailed execution 600 ms1 s 800 ms 2 s 2 s 200 ms2 s 400 ms2 s 6 GroupBy(S0; COUNTALL)

<u>Perfopticon</u> [3] – Distributed Database Performance Analysis

- Physical plan overview
- Performance details by operator

SQL Query Execution Visualizer

Considerations

- Be able to follow along the entire query execution
- Show how values are derived and processed
- Allow to focus on a singular operation
- Visuals should resemble actual operator behavior

Implementation

Query Plan Tree Diagram

Query Plan displayed as interactive diagram, acts as point of reference for entire query

Operator Transformations

Visualizations for each physical operator, with unique annotations for each operator type

Intermediate Datasets

All visualizations display inputs (output of the previous operators) and how it is transformed by this operator to the output for the next operator

Operator Steps

Can view operators in isolation, or all at once arranged in post-order to show entire sequence

References

- 1. Chen, P., Li, H., Bhowmick, S. S., Joty, S. R., & Wang, W. (2022, June). LANTERN: Boredomconscious Natural Language Description Generation of Query Execution Plans for Database Education. In Proceedings of the 2022 International Conference on Management of Data (pp. 2413-2416).
- 2. Cembalo, M., De Santis, A., & Ferraro Petrillo, U. (2011, October). SAVI: a new system for advanced SQL visualization. In Proceedings of the 2011 conference on Information technology education (pp. 165-170).
- Moritz, D., Halperin, D., Howe, B., & Heer, J. (2015, June). Perfopticon: Visual query analysis for distributed databases. In Computer Graphics Forum (Vol. 34, No. 3, pp. 71-80).