The Utilization of Waste-to-Energy Incineration Ash in Clay Fired Brick Manufacturing

Introduction

- In the US, millions of tons of municipal solid waste (MSW) are produced annually, most of which are sent to landfills
- Waste-to-Energy (WTE) plants combusts the MSW with energy recovery, effectively reduces the weight and volume of MSW, and ends up with WTE ash
- Coarse WTE ash is suitable to be used as stone aggregate substitute in concrete production
- The fine fractions of WTE ash are difficult to incorporate in building materials due to its fine particle size
- This research aims to investigate the feasibility of using the fine fractions of WTE ash in partial replacement of clay in fired bricks.

Materials

Kaolin (clay)

• WTE combined ash as received (max size 30 mm)

- Separated into two samples after sieving:
- < 2 mm and < 9 mm
- Ash samples were grinded for homogenization
- The base water to solid ratio of 0.35 was adjusted throughout the experiment

		< 2 mm WTE	< 9 mm WTE	Firing	
	Kaolin	combined	combined ash	temperature	Water to
Sample	clay (%)	ash (%)	(%)	(°C)	solid ratio
Control1	100	0	0	950	0.35
Control2	100	0	0	1000	0.37
CA2	70	30	0	1000	0.35
CA9	70	0	30	1000	0.45

 Table 1. Mixture of bricks and preparation parameters.

Sample Preparation

Steel balls for grinding

< 2 mm and < 9 mm WTE Samples sieved ash samples grinded for 2 hours in ball mill

through <100 um opening sieve

and mixed for 6 minutes

Dried in ambient conditions for 24 hours

Bricks were fired at either 950°C and 1000°C in furnace for 2 hours

testing machine

Figure 1. Sample preparation process.

Tiffany Kalu¹, Yixi Tian^{2,3}, Athanasios Bourtsalas^{2,3}, Shiho Kawashima⁴ ¹ Harvard University, Cambridge, MA

² Department of Earth and Environmental Engineering, Columbia University, New York, NY ³ Earth Engineering Center, Columbia University, New York, NY ¹ Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY

Methods

Brick Manufacturing

Clay-ash dry mixture mixed for 4 minutes. Water was added

Mixtures pressed into three 50 x 50 x 50 mm molds and demolded

Dried in oven at 100°C for 24 hours

After firing, bricks were allowed to cool down

Figure 2. Brick manufacturing process. **Compression Testing**

Sample in compression

Sample postcompression test

Control 1: 100% clay, 0.35 water/solid ratio, 950°C **Control 2**: 100% clay, 0.37 water/solid ratio, 1000°C **CA2**: 70% clay, 30% < 2 mm WTE combined ash, 0.35 water/solid ratio, 1000°C **CA9**: 70% clay, 30% < 9 mm WTE combined ash, 0.45 water/solid ratio, 1000°C

Results

Figure 4. Firing shrinkage.

Figure 5. Compressive strength.

Figure 6. Elastic modulus.

Figure 3. Compression testing.

Discussion

- All samples experienced microcracking during firing to some degree
- The CA2 sample had the greatest firing shrinkage, while also having the highest compressive strength and elastic modulus
- The Control1 sample had the lowest firing shrinkage, while also having lowest compressive strength and low elastic modulus

Figure 7. Bricks after firing.

Future Work

- After firing, many bricks cracked. One solution might be to hydraulically press the clay into the molds for a more uniform molding process.
- Other parameter combinations of drying times, firing temperatures, water to solid ratios, and ash replacement should be investigated to improve workability and mechanical properties
- Leaching tests should be performed to determine the environmental risk of these bricks in building applications

Acknowledgments

Columbia and Amazon SURE program, Dr. Yixi Tian, Professor Thanos Bourtsalas, Professor Shiho Kawashima, and Carleton Laboratory staff