Effectiveness of *Escherichia coli* Nissle in preventing cariogenic environments caused by *Streptococcus mutans*

Anjeli Santillan, Michael (Ming Chau) Chan, Helen H. Lu

Biomaterials and Interface Tissue Engineering Lab, Columbia University, Department of Biomedical Engineering

Introduction: Dental caries are a disease characterized by deteriorated enamel. *Streptococcus mutans* are highly cariogenic oral bacteria that catabolize multiple carbohydrates to secrete acids and polysaccharides that promote bacteria adsorption to the tooth (i.e. biofilm). *Escherichia coli* Nissle (EcN) and its engineered variants are evaluated in their ability to survive against *S. mutans* and inhibit its acid and biofilm production, as eventually they will be delivered to white spot lesions to facilitate remineralization and disinfection.

Methods: Brain Heart Infusion (BHI) media, EcN, sfGFP-tagged EcN, its self-lysing variant (SLIC), and *S. mutans* were pipetted into single-culture and co-culture wells (n=5) in a 96-well plate. At 37°C, a plate reader (BioTek) records the plate’s fluorescence and absorbance values for 24 hr at 15 min increments.

After aspirating the cells and media, the wells are stained with 0.1% crystal violet solution (Sigma). The plate reader reads the absorbance (OD=585 nm). The pH of corresponding Falcon tubes is each measured with a pH probe at 0, 4.5, and 24 hr.

Results:

Single culture growth profiles

The 1:100 co-cultures’ growth profiles resemble those of corresponding single cultures. Oscillations in absorbance occur across all co-cultures after *S. mutans* has attained its exponential growth phase.

Co-culture growth profiles

After 24 hours, *S. mutans* alone drops to a pH of 4.8 while the co-cultures end with a pH above 5.5.

Biofilm deposition after 24 hours

Engineered EcN produced virtually no biofilm. When plated with either engineered EcN, *S. mutans* experiences a significant reduction in biofilm deposition.

Conclusions: SLIC’s survival is unimpeded by the presence of *S. mutans*, showing potential as a probiotic capable of releasing assistive proteins through self-lysis. The oscillations in absorbance suggest competition, but this requires further investigation with quantitative measurements of gene expression by qPCR. Engineered EcN shows promise in counteracting *S. mutans*’ biofilm deposition and acidogenicity.

References:

Acknowledgements: The authors would like to acknowledge support by the Columbia-Amazon Summer Undergraduate Research Experience.