HOW COES emotional state affect gait?

Ainslie Allen¹, Fitsum Petros^{1,2}, Sunil K. Agrawal^{1,2}

¹Robotics and Rehabilitation Laboratory, Columbia University, New York, NY 10027, USA ²Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA

ROAR LAB COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science 77

Background

Falls pose a significant threat to aging individuals, requiring effective interventions. Strategies like medical alert systems, lifestyle changes, and balance training programs have been developed to mitigate fall-related injuries¹, however, these strategies neglect to consider the contribution of emotional state to fall risk. This is important because age-related cognitive decline impairs a person's ability to process external stimuli² and emotions induce a cognitive load on the brain³. Therefore, processing emotions can increase an older person's fall risk. There has been some research into the effect of emotions on posture and balance⁴, however, they mainly focused on discrete emotions like fear, anger, or contentment, making consistent emotional experiences across subjects difficult. Instead, by studying the emotional state of a person using a dimensional model of emotions⁵, an element of objectivity can be added, accounting for this error. A study that examines the relationship between emotional state and gait is missing from literature and would aid in future research.

Objectives

This study aims to analyze the relationship between gait, arousal, and valence to extract valuable insights for the development of targeted fall prevention interventions. By investigating the intricate relationship between emotional states and fall risk, this study will contribute valuable insights for the development of targeted fall prevention interventions.

Experimental Design

Step 1: Induce emotional states with virtual environments VR

Step 3: Immerse participant in virtual environment

amazon

Valence Low

Figure 1. Visual representation of the virtual reality environments custom designed for the study and the emotional states they represent.

Step 2: Evaluate emotional states with physiological measures

Step 4: Evaluate gait using instrumented mat

Measurements

Valence: Facial electromyography of the corrugator supercilii and zygomaticus major muscles

Arousal: Heart rate collected via the Polar H10 chest strap heart rate monitor

Gait: Step length and step time variability and walking velocity collected using an instrumented mat

High Arousal

Scan the QR **Code** with your phone's camera to see more of my work

_ow Arousal

References

1. Pfortmüller, C. A., Lindner, G. & Exadaktylos, A. K. Reducing fall risk in the elderly: risk factors and fall prevention, a systematic review. *Minerva Med.* **105**, (2014).

2. Amboni, M., Barone, P. & Hausdorff, J. M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 28, 1520–1533 (2013).

3. Plass, J. L. & Kalyuga, S. Four Ways of Considering Emotion in Cognitive Load Theory. Educ. Psychol. Rev. 31, 339-359 (2019).

4. Dietz, D. et al. Walk This Beam: Impact of Different Balance Assistance Strategies and Height Exposure on Performance and Physiological Arousal in VR. in Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology 1–12 (Association for Computing Machinery, 2022).

doi:10.1145/3562939.3567818. 5. Feldman Barrett, L. & Russell, J. A. Independence and bipolarity in the structure of current affect. J. Pers. Soc. Psychol. 74, 967 (1998).

Acknowledgements

The authors thank Tiffany Moore, Dean Shavonna Hinton, and the entire Columbia University and Amazon Summer Undergraduate Research Experience (SURE) program for the opportunity to conduct this research. Additional thanks to Wiktoria Ozarek for her assistance with setting everything up.

