

2D to 3D Wind Speed Data Reconstruction for Development of Low-Cost Monitoring Systems D. Kwon¹, P. Rubenstein², J. Jung³, and M. G. Giometto³ Environmental Flow Physics Lab at Columbia University

Motivation and objectives

- 1. Spatiotemporal in-situ measurements are essential to achieving reli simulations of atmospheric boundary layer flows.
- 2. To obtain high-fidelity predictions of wind behavior on the regional scale, a monitoring system should be comprised of a large number measurement points.
- 3. Using 2D anemometers instead of 3D sensors significantly reduces costs and allows a denser monitoring network with additional statio
- 4. To make this substitution possible, it is necessary to reconstruct the vertical component of the wind velocity, w, from the measured horizontal velocity vector (u, v).
- 5. The present study aimed to develop a machine-learning-based reconstruction of vertical wind velocity w to facilitate the reliability of 2D anemometers in the field.

Methodology

Field data collection

A ten-foot tower was deployed on the roof of the Mudd Building to measuring at 1Hz, a 3D anemometer measuring at 20Hz, and other 1Hz. Data was collected over ten days.

Data Postprocessing

Power density spectrums that convey the strengths of different wavelengths within the timeseries were derived using fast Fourier transforms

1. Civil and Environmental Engineering and Earth Studies, University of Notre Dame, Notre Dame, IN 2. Mechanical Engineering Department, The College of New Jersey, Ewing, NJ 3. Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY

	J			
	Statistical analyses of data and prediction proof of			
iable	concept			
I	To inform predictive models for the reconstruction of vertical velocity component, several statistical factors were examined:			
r of	1. Relationships based on meteorological principles ¹			
	 Fluctuations of u, v, w wind velocity components 			
S ONS.	 Reynolds Shear Stress values 			
	 Turbulent Kinetic Energy 			
	 Temperature and humidity gradients and buoyancy 			
	 Correlations between means and standard deviations 			

2. Trends within timeseries data

of timeseries data.

• Fractal Dimension Analysis², which utilizes structures within timeseries data to characterize variability

Results

Observed Physical Relationships and Prediction Results

Mean Data	In-Situ Value	3D Reconstruction	Absolute Difference
w	6.51E-04	5.65E-06	6.45E-04
w*u	5.07E-07	-2.11E-05	2.16E-05
w*v	-4.63E-07	-2.74E-05	2.69E-05
w*w	1.4E-04	9.19E-06	1.34E-04
w*T	-2.20E-08	2.14E-07	-2.36E-07

Figure 6. Reconstructed vs. In-Situ Vertical Velocity Timeseries

80000

20000

Table 1. Fluctuation Relationships with Reconstructed and In-Situ Vertical Velocity Components

	6 Hours								
	U + V + TG + HG	U	V	TG	HG				
MAE	0.1034197841	0.2080996097	0.2059620111	0.4215034516	0.5646423564				
MSE	0.2069948121	0.1069610787	0.1021330392	1.144410875	2.864737871				
12 Hours									
	U + V + TG + HG	U	V	TG	HG				
MAE	0.17926211	0.2989972023	0.3086607209	0.4862633809	0.5514125054				
MSE	0.3050101502	0.1658877835	0.1843832961	0.7428145829	1.085585993				
24 Hours									
	U + V + TG + HG	U	V	TG	HG				
MAE	0.2166757766	0.3164810573	0.3312290081	4.24E-01	0.629945207				
MSE	0.3243184471	0.1995352387	0.227479091	3.91E-01	1.256116781				

Table 2. MAE and MSE Values for Vertical Velocity Reconstruction

Conclusions

- Horizontal wind velocities show strongest consistent relationships with vertical velocity
- As time chunk length decreases, accuracy increases for reconstruction
- A combination of variables as input is optimal for reconstruction
- Confirmed reconstruction as a proof of concept

Future Study

Use of more sophisticated machine learning models/tuning parameters

Models like transformers and other temporally dependent models will be well-suited to this application

Specific topographical analysis

Another possible way to improve predictions is by considering each sensor's surrounding topography and using basic simulations to check and correct extrapolated values

Figure 7. Example Spatial Dependencies. Left: Horizontal Wind Interactions due to Obstruction. Right: Wind Rose Showing Dominant Wind Directions

References

[1] Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media.

[2] Shu, Z. R., Chan, P. W., Li, Q. S., He, Y. C., Yan, B. W., Li, L., ... & Yang, H. L. (2021). Characterization of vertical wind velocity variability based on fractal dimension analysis. Journal of Wind Engineering and Industrial Aerodynamics, 213, 104608.