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Figure:  Illustration of the forward and inverse problems of crystallography. The 
forward process is a relatively trivial process where scientists pass x-ray beams into 
the material and record the scattering pattern. The inverse problem is not yet solved 
for all cases.

Figure:  End to end representation of adding a  new crystal to our existing database where 
we first pass the cif file into diffpy-cmi bond calculator, and we pass it through our script to 
append to the rest-api.
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The inverse problem in crystallography [2] is one that gives incredible insight to a 
materials interatomic structure and makeup. In practice, solving the structure 
solution problem allows scientists from a myriad of disciplines, ranging from 
drug synthesis and even efficient battery design.  As shown in the figure above, 
the forward process is relatively trivial, consisting of passing x-ray signals 
through a material to record the constructive interference on a scattering pattern. 
While the inverse problem has been solved for simple crystal structures, 
structure solutions from powder diffraction is much harder, and more advanced 
methods may be needed.
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In more complex nano-materials, the one dimensional diffraction data is not enough to 
reconstruct the 3D electron density map. Therefore the pair distribution function is 
needed (PDF), which is the weighted histogram of interatomic distances. To compute the 
distance lists of an atom, a double sum is required, which can be translated into a 
nested for loop in coding with a O(n2) time complexity. When we compute these pair 
distribution functions for a high enough r(Å), this exponential growth can take a long time 
for researchers to devise data analysis. By pre-computing a distance list in a database, 
we allow for more intricate problems to be solved, because researchers can compute the 
pair distribution function in linear or even constant time. To do this we use the 
BondCalculator class from diffpy-cmi [3].

In this study, we devised a python framework that not only builds, but maintains a 
distance list database, where researchers can add, create, and query new materials to 
the data. Although preliminary, we obtained 785 experimental .CIF files and wrote an 
extensive .json database that consists of not only the distance list but also other 
metadata of the material including the space group, and lots of information regarding the 
unit cell. As shown in the figure below, this is the result of the weighted histogram of the 
distance lists, that result in a radial distribution function (RDF).  

Figure:  Visualization of the radial distribution 
function that is a histogram form of the 
distance lists of some material. As seen in the 
equation, we can obtain the pair distribution 
function parameterized by G(r) from R(r) [1]

Figure: Depiction of one material in our 
database with an abbreviated distance list. The 
three options are add, create, and query.

In this research, we created set the groundwork to solve two very fundamental and 
practical problems in crystallography. The first being the long computational time to 
compute a pair distribution function. With our precomputed distance list, it allows for 
researchers to use the distance lists for analyzing pair distributions functions are 
different experimental conditions such as heat and instrument parameters by convolving 
the delta functions with a gaussian distribution. Our group has many ambitions for future 
studies. Firstly, we hope to run our database maintainer on a large database of CIF files 
obtained from publicly available databases such as ICSD to fully publish the distance list 
of databases. We believe that a very important use case for this research is for 
computational adept material scientists who are interested in solving specific correlation 
problems regarding distance lists in terms of machine learning. For example, they may 
be interested in solving the inverse problem directly from distance lists, or even 
predicting the space group of a material etc. While there is still much work to be done to 
fully publish this database to the public, this summer we have set up the groundwork 
and database maintainer code to do so.
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Figure: Figure of a sample use case for our project. Researchers can carefully curate a dataset of pair 
distribution functions from our distance lists, and generate a many PDFs to train a deep neural network to 
solve the inverse problem. 

This research entailed creating software and database pipelines to expedite material 
science researchers in the specific subfield of crystallography. While we do not have 
explicit findings in this research, we have created proof of concept code and 
preliminary results for a database of distance lists so that researchers can computer 
pair distribution functions on the fly. Ultimately, this research takes a valuable 
incremental step to what has been solved in the inverse problem so far, and we hope 
that with this contribution, it allows researchers in the future to solve this interesting 
problem in a faster and more efficient manner.


