

Edge Contacts to Atomically-Thin Superconductors

Sofia Cruz^{1,2}, Jesse Balgley², Xuanjing Chu², Ted Chung², Jinho Park², James C. Hone² 1. Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder 2. Department of Mechanical Engineering, Columbia University

Introduction

- A qubit's quantum properties enable them to possess exponentially greater computing power
- Scaling quantum computers is limited, with a single qubit typically occupying $> 1 \text{ mm}^2$ area
- Van der Waals (vdW) layered materials show promise to host next-generation qubits with both long-coherence-time data storage and small areas for better scalability
- High-quality electrical contact is crucial to study the electronic properties of these materials

In this poster we will study edge contact to single atomic layers of the vdWs hBN and MoTe,

Methods

- Due to its air sensitivity, MoTe, is exfoliated in
- After exfoliation, we search for sufficient flakes under the microscope
- To check the surface we use the AFM

of hBN and MoTe₂, we then *stack*

J. Phys.: Condens. Matter 34, (2022).

• Following stacking, we use Argon (Ar) Milling to etch and deposit onto MoTe, in situ at ultra-high-vacuum (UHV) • This ensures high-quality electrical contact without significant surface oxidation

Acknowledgments

This work was supported by the Columbia Amazon Summer Undergraduate Research Experience (SURE) Fellowship and the Hone Lab

1. L. Wang et al. Science 342, 614-617 (2013). 2. A. Antony et al. J. Phys.: Condens. Matter 34, (2022). 3. A. Jain et al. Nano Letters 19 (10), 6914-6923, (2019).

Science 342, 614-617 (2013)

References

Reference	Milling rate	Parameters			Material
		Beam V	Accel V	Emission Cur	
Philip Kim Group (Harvard)	~0.6 nm/min (soft milling)	200 V	40 V	8.0 mA	TMDC
Gil-Ho Lee Group (POSTECH)	~1.0 nm/ min	400 V		10 mA	h-BN
Raytheon BBN	15 nm/min	400 V	80 V	23 mA	MoTe2
Photonics Labratory ³	~14.7 nm/min	250 V	50 V	10 mA	MoOx (for contact)

- table
- future quantum devices

Results

hBN on SiO₂ chip, "soft milled" for 5 minutes

hBN, MoTe, stack on SiO, chip

hBN: 2.0~2.1 nm etched

Stack following etching and deposition of metal

Conclusions

Successfully tested Ar milling on hBN

• Unsuccessful translation of Ar milling to the stack

• Ar milling conditions in indicated 5 minutes insufficient to etch through the top hBN layer, preventing edge contact with MoTe,

• Plan for the future: Test longer milling with different conditions outlined in the

Potential implications: Advancements for MoTe2 applications and enhanced

