

Silver nanowire thin-film heaters in bioplastic microfluidic devices for molecular diagnostics

Introduction

- Microfluidic nucleic acid detection assays rely on bulky, expensive laboratory equipment, limiting their application in point-of-care settings
- Aim to develop a low-cost, minimal-equipment heating method using transparent, conductive silver nanowires on microfluidic devices
- Great potential for more sustainable and accessible health monitoring

Method

 Custom fabrication technique developed to integrate silver nanowires (AgNW) and bioplastic polylactic acid (PLA) for thin-film, transparent heater

 Heating ability characterized with Arduino-powered thermocouples & Seek infrared thermal camera • Demonstration of molecular diagnostic assay on a microfluidic chip: isothermal amplification with AgNW-PLA heater via RT-LAMP for detection of SARS-CoV-2 in saliva

Weiyi Zhang weiyi.zhang@uconn.edu

Weiyi Zhang¹, Abigail G. Ayers², Samuel K. Sia²

¹University of Connecticut, Department of Biomedical Engineering ²Columbia University in the City of New York, Department of Biomedical Engineering

Results

Heating characterization

Figure 4. Images of AgNW-PLA heater. (A) Standard camera image demonstrates transparency of AgNW-PLA. (B) Infrared thermal images of AgNW-PLA heater across different temperatures (left to right: 45°C, 65°C, 85°C).

Figure 5. (A) Heating stability of AgNW-PLA heater. Plot shows average temperature across replicates. Each replicate (n=2) required slightly different voltage to reach target temperatures (45°C, 65°C, 85°C); voltage range shown in legend. (B) Relationship between applied voltage across copper electrodes and temperature of AgNW-PLA heater demonstrates linear pattern. (C) Efficiency (kJ/min) of AgNW-PLA heaters at different temperatures (n=4).

Conclusion

- AgNW-PLA heater demonstrates fast response and stable heating
- AgN-PLA heater exhibits high conductivity and great Joule heating efficiency.
- AgNW-PLA heater allows for successful detection of SARS-CoV-2 on a microfluidic chip via RT-LAMP molecular diagnostic assay.
- The **biodegradability** of PLA simplifies disposal processes and promotes sustainability.
- Combining the compact design with the high sensitivity and accuracy molecular diagnostics can offer, these diagnostic tools signify great potential for application in point-of-care and resource-constrained environments.

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Demonstration of heating ability for molecular diagnostics: RT-LAMP for SARS-CoV-2 detection

reaction chambers

Future Work

- methods
- Enhance contact between copper plates and silver nanowire to improve conductivity and uniform distribution
- Explore alternative conducting nanomaterials such as iron, zinc, or magnesium for improved biosafety during biodegradability

Acknowledgement

Thanks to SURE program and Dr. Sia for this amazing opportunity. Special thanks to Abby for her tremendous support and reliable mentorship.

Traditional instrument heat block AgNW-PLA heater

Figure 8. Endpoint quantification of amplified DNA from RT-LAMP assay to detect SARS-CoV-2 shows successful amplification of 2 SARS-CoV-2 genome targets (N, Nsp3) and positive control (human 18S rRNA), and none for negative control (NTC). Starting concentration was 10⁵ copies/mL inactive virus spiked in human saliva (n=3).

Figure 9. Fluorescence RT-LAMP visualizes amplification difference between SARS-CoV-2 targets (N, Nsp3) and negative control (NTC).

Optimize heating distribution by implementing different coating