Sustainable Synergy in GSL: Exploring a Dual Approach to Reduce Evaporation & Generate Solar Power

Background

The Great Salt Lake (GSL) is a crucial indicator of regional climate; only outflow is evaporation. • Shrinking rapidly over last decade with new record low in 2022 at 4,189.6 ft. (NASA, 2022)

This has significant ecological, health and economic implications:

- Reduced inflows from rivers, lower precipitation, and higher human consumption
- Airborne contaminants, brine shrimp production, bird habitat, mineral extraction costs, salt harvesting operations, magnesium mining, and recreational activities

Objectives

What is a cost effective solution to maintain higher levels of the GSL?

- Explore technical and economic feasibility of floating solar panels to reduce evaporation losses to help raise the GSL level, while paying for this water savings through sales of the "green" electricity produced
- Learn from past installations of solar panels to customize a cost-effective solution

(SHSF, 2023)

Data analysis and solar production calculations estimates average annual energy production, evaporation reduction, and costs • NREL used for tools, data on solar radiation, capital and operating costs, and environmental impacts • Revenue assessed based on average and energy contract prices corresponding to solar w/ battery storage and w/o battery storage from spot market electricity prices and utility companies (PGE, 2022) Established relationship between variables and identified patterns to decide ideal panel coverage in GSL

Preliminary Findings

Results

- of lake area)

Yuliana Garcia¹, Dr. Upmanu Lall² ¹University of Michigan, Department of Mechanical Engineering,² Columbia University, Department of Earth & Environmental Engineering

Methodology

Net Annual Rev w/ Storage Electricity Producction (MW		
	11,204,340	
Panel Coverage (%)	22,408,680	
.01	33,613,020	
	44,817,360	
	56,021,700	
	67,226,040	
	78,430,380	
	89,634,720	
.10	100,839,060	
	112,043,400	
Total Evaporation Reduced	d (m^3/year)	Annual Water Saved in ac
	32,271,400	
	64,542,800	
	96,814,200	
	129,085,600	
	161,357,000	
	193,628,400	
	225,899,800	
	258,171,200	
	290,442,600	
	322,714,000	

Evaporation can be reduced by approx. 70% by floating solar panels Electricity production from covered region can range from 4–33.6 billion MWh/year, scaled to represent about 1/10th of whole US energy demand • Levelized annual cost (w/o storage) and annual revenue ranges from 134 million–2.02 billion dollars,

depending on coverage (1% to 10%)

Annual water savings achieved through reduced evaporation range from 26,163--392,443 acre-feet, depending on lake area covered Net Revenue with batteries included lies at a value of 11,603,200

Limitations

- Lack of up-to-date data, assumptions in regards to calculations
- **Areas for Further Study**
- Tracking systems for solar panels can optimize energy production by adjusting the panel's position throughout the day to maximize sunlight exposure

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

h/year)		
	2,240,868	
	4,481,736	
	6,722,604	
	8,963,472	
	11,204,340	
	13,445,208	
	15,686,076	
	17,926,944	
	20,167,812	
	22,408,680	
-ft		
	26163	
	52326	
	78489	
	104652	
	130814	
	156977	
	183140	
	209303	
	235466	
	261629	

Discussion

Research highlights the potential benefits of using floating solar panels on the GSL, including reduced evaporation and significant electricity generation.

- Implementation can lead to potential rev. generation and water resource conservation
- Thorough consideration of associated costs and environmental impacts is essential before large-scale adoption
- Findings can inform further research and decision-making on the sustainability of using solar panels in GSL.
- Applications to address ideal angles of solar panel for exposure and wind and bird factors

Conclusion

- By using floating solar panels backed by battery storage over 10% of the GSL area, on average 26,1629 Ac-ft/year of water loss can be saved while generating a net annual revenue of approx. 11,603,200
- This is a potentially outstanding solution to the problem since instead of a cost for water saving there is a co-benefit
- Ecological impacts of the floating solar panels may be impacts on bird habitats. These may need to be investigated

Acknowledgements

In addition, I want to express my gratitude to the Amazon SURE Program and the Water Lab—especially to my mentor, Dr. Upmanu Lall—for all the support and input.

