New Global Program Bolsters Skills of Experts in Sustainable Energy

Oct 18 2013 | By Holly Evarts

Energy issues facing society are one of the biggest technological and policy challenges of the twenty-first century. A new global program at Columbia Engineering is aiming to make headway in addressing this problem.

workers on a rooftop in West Africa, installing solar panels
Installing solar panels in West Africa

“It is absolutely critical to develop a global curriculum to prepare engineers to ensure universal access to modern energy services,” says Mechanical Engineering Professor Vijay Modi, who has been working on these issues around the world for 10 years. “For example, there are 1.4 billion people without electricity access today—We want to bring electricity access to them. We also need to increase the share of renewable energy in the global energy mix as it is one of the drivers of decarbonization, and accelerate the rate of improvement in energy efficiency.”

To that end, Modi has been working with the Economic Community of West African States (ECOWAS) Centre for Renewable Energy and Energy Efficiency (ECREEE), the United Nations Industrial Development Organization (UNIDO), and the Engineering Department of the University of Cape Verde in Mindelo, Sao Vicente, to design an innovative distance-learning program that leads to a certification in Sustainable Energy Solutions. The program is designed to build skills of experts in the field of sustainable energy systems and solutions. In January 2014, the certification program will be offered to a pilot group of 10 students from West African countries that are members of ECOWAS. This cohort is expected to comprise current employees of utilities, regulators, or independent power producers.

The idea for the program came about during a post-event discussion hosted by Columbia University President Lee C. Bollinger as part of the World Leaders Forum a few years ago. Enhanced engineering skill development was identified as an essential need. Subsequently, ECREEE and UNIDO identified a need for assistance in the areas of design and assessment capability, as well as techno-economic feasibility of renewable energy and energy efficiency technologies.

“Our overall objective,” says Modi, “is to strengthen the long-term capabilities of these institutions, service providers, and companies to design and appraise projects, integrate renewable energy and energy efficiency into their planning, operational, and monitoring cycles, and contribute to strengthening of policy framework at the national level.”

The School’s Certification of Professional Achievement in Sustainable Energy Solutions comprises four 3-credit courses, two of which are taught by Modi. He is joined by Mechanical Engineering Assistant Professor Arvind Narayanaswamy and Pezhman Akbari, lecturer in the discipline of mechanical engineering. The yearlong program includes distance-learning lessons through Columbia Video Network as well as face-to-face workshops to be held at the University of Cape Verde.

ECOWAS is a regional group of 15 countries—Benin, Burkina Faso, Cape Verde, Côte d’Ivoire, The Gambia, Ghana, Guinea, Guinea Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, and Togo—founded in 1975. “Our Columbia Engineering program dovetails nicely with ECOWAS’s mission,” Columbia Engineering Vice Dean Soulaymane Kachani adds, “which is to create a favorable business environment for development within the region and to ensure that private enterprise is effectively supported and sustained.” Modi’s laboratory is already working in the region with a range of projects that include innovations, information systems, and/or national planning support in Mali, Senegal, Nigeria, and Liberia.

The program offers a broad overview of possible energy generation technologies, integration of renewable technologies in the larger energy system, both bottom-up and top-down approaches to achieving energy access and reliable supply, smart payment systems and business models for entrepreneurs, and devising national scale programs to achieve the above objectives along with energy efficiency technologies.

Stay up-to-date with the Columbia Engineering newsletter

* indicates required