Plasma Physics Colloquium

Friday, February 17, 2017
2:00 PM - 3:00 PM
Add to Calendar

Link added to clipboard:

https://events.columbia.edu/cal/event/eventView.do?b=de&calPath=%2Fpublic%2Fcals%2FMainCal&guid=CAL-00bbdc41-5a25c527-015a-28c541ce-00006839events@columbia.edu&recurrenceId=
Matt Landreman
Assistant Research Scientist, Institute for Research in Electronics & Applied Physics, University of Maryland, College Park

Title: "An improved current potential method for fast computation of stellarator coil shapes"
Abstract: Several methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we nd the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed- boundary plasma optimization, or for scoping new stellarator geometries.
Event Contact Information:
Christina Rohm
212 854 1586
[email protected]
LOCATION:
  • Morningside
TYPE:
  • Lecture
CATEGORY:
  • Engineering
EVENTS OPEN TO:
  • Alumni
  • Faculty
  • Postdocs
  • Prospective Students
  • Public
  • Staff
  • Students
BACK TO EVENTS

Date Navigation Widget

Filter By

Subscribe Export Options

Getting to Columbia

Other Calendars

Guests With Disabilities