Robotic Neck Brace Can Help Analyze Cancer Treatment Impacts

The new device from Columbia Engineering could help guide recovery after treatment for head and neck cancer

Jul 19 2021 | Photo Credit: Sunil K. Agrawal, ROAR Lab.
new robotic neck

Schematic of the new robotic neck brace and a picture of a subject using the brace. (Left) A CAD drawing of the neck brace. (Right) A participant wearing the brace during experiments while sitting comfortably on a chair. Surface electrodes are mounted in the head and neck area to record muscle activity.

New York, NY—July 19, 2021— A new robotic neck brace from researchers at Columbia Engineering and their colleagues at Columbia's Department of Otolaryngology may help doctors analyze the impact of cancer treatments on the neck mobility of patients and guide their recovery.

Head and neck cancer was the seventh most common cancer worldwide in 2018 , with 890,000 new cases and 450,000 deaths, accounting for 3% of all cancers and more than 1.5% of all cancer deaths in the United States. Such cancer can spread to lymph nodes in the neck, as well as other organs in the body. Surgically removing lymph nodes in the neck can help doctors investigate the risk of spread, but may result in pain and stiffness in the shoulders and neck for years afterward.

Identifying which patients may have issues with neck movement "can be difficult, as the findings are often subtle and challenging to quantify," said Scott Troob, assistant professor of otolaryngology - head and neck surgery and division chief of facial plastic and reconstructive surgery at Columbia University Irving Medical Center. However, successfully targeting what difficulties they might have with mobility can help patients benefit from targeted physical therapy interventions, he explained.

The current techniques and tools that doctors have to judge the range of motion a patient may have lost in their neck and shoulders are somewhat crude, explained Sunil K. Agrawal, a professor of mechanical engineering and rehabilitative and regenerative medicine and director of the ROAR (Robotics and Rehabilitation) Laboratory at Columbia Engineering. They usually either provide unreliable measurements or require too much time and space to set up for use in routine clinical visits.

To develop a more reliable and portable tool to analyze neck mobility, Agrawal and his colleagues drew inspiration from a robotic neck brace they previously developed to analyze head and neck motions in patients with amyotrophic lateral sclerosis (ALS). In partnership with Troob's group, they have now designed a new wearable robotic neck brace. Their study appears July 12 in the journal Wearable Technologies.

The new brace was made using 3D-printed materials and inexpensive sensors. The easy-to-wear device was based on the head and neck movements of 10 healthy individuals.

Patients consistently identify need for rehabilitation and guided exercises after surgery as an unmet need in their medical care. This work will lay the foundation for the appropriate identification of patients for intervention. We additionally hope that through using the neck brace, we will be able to objectively quantify their improvement and develop evidence-based rehabilitative programs.

Scott Troob
Assistant Professor of Otolaryngology - Head and Neck Surgery, Division Chief of Facial Plastic and Reconstructive Surgery

"This is the first study of this kind where a wearable robotic neck brace has been designed to characterize the full head and neck range of motion," Agrawal said.

In the new study, the researchers used the prototype brace, along with electrical measurements of muscle activity, to compare the neck mobility of five cancer patients before and one month after surgical removal of neck lymph nodes. They found their device could precisely detect changes in patient neck movements during routine clinical visits.

"Use of the sensing neck brace allows a surgeon to screen patients postoperatively for movement difficulty, quantify their degree of impairment, and select patients for physical therapy and rehabilitation," Troob said.

"Patients consistently identify need for rehabilitation and guided exercises after surgery as an unmet need in their medical care," Troob said. "This work will lay the foundation for the appropriate identification of patients for intervention. We additionally hope that through using the neck brace, we will be able to objectively quantify their improvement and develop evidence-based rehabilitative programs."

In the future, the researchers hope to investigate larger groups of patients and use the neck brace to follow patients through physical therapy to develop evidence-based protocols for rehabilitation, Troob said. They also would like to develop similar braces for other surgical sites, such as the forearm, ankle, or knee, he added.

#####

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School’s faculty are at the center of the University’s cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, “Columbia Engineering for Humanity,” the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

ABOUT THE STUDY

The study is titled "A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients."

The study appeared in the journal Wearable Technologies on July 12, 2021.

Authors are: Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H. Troob and Sunil K. Agrawal.

Department of Mechanical Engineering, Columbia Engineering

Department of Otolaryngology—Head and Neck Surgery, Columbia University Irving Medical Center

This work received funding from NSF IIS-1527087 and New York State Grants C31290GG and C32238GG.