Daniel Esposito

Associate Professor of Chemical Engineering

Daniel Esposito’s Solar Fuels Engineering Laboratory develops electrocatalytic and photocatalytic technologies that convert renewable and abundant solar energy into storable chemical fuels.

His lab’s research is motivated by a sustainable energy future in which sunlight is used to convert low-energy molecules such as water into storable chemical fuels such as hydrogen. These solar-generated fuels are often referred to as “solar fuels,” which offer an attractive means of storing solar energy and thereby overcome the issue of solar intermittency. Fuels also have the advantage of being versatile, meaning that they can be used for a wide variety of applications across transportation, industrial, residential, and commercial energy sectors. In the Solar Fuels Engineering Lab, the overarching goals are: (1) to study and develop novel materials and device concepts that can more efficiently and cost-effectively produce solar fuels than today’s state-of-the-art technology, and (2) to help equip the next generation of engineers with the skills they will need to accelerate the transition to a sustainable energy future.

Esposito’s research group works at the intersections of catalysis, photovoltaics, materials science, and electrochemical engineering. By using advanced analytical techniques to study well-defined materials and electrodes, they seek to develop a deeper understanding of the fundamental chemical and physical phenomena that underlie the operation of solar and electrocatalytic technologies. Especially important to this research are scanning probe microscopy techniques, which are used to measure micro- and nano-scale spatial variation in the properties and performance of (photo)electrocatalytic materials while they are operating in the electrochemical environment. This materials-centric research is complemented by efforts to design and demonstrate scalable electrochemical and solar reactors that convert sunlight or solar-derived electricity into chemicals or fuels. The group’s research in this second area relies on emerging 3D printing fabrication capabilities, modeling, and high-speed video imaging to guide the design of innovative device concepts.

Esposito joined the Chemical Engineering Department at Columbia Engineering in 2014. Prior to that, he was a postdoctoral fellow at the National Institute of Standards and Technology in the National Research Council Fellowship Program. He received his BS in chemical engineering in 2006 from Lehigh University and a PhD in chemical engineering in 2012 from the University of Delaware.

Research Areas


  • Chemical Reactions and Kinetics
  • Transport Phenomena
  • Chemical Reaction Engineering
  • Electrochemical Engineering
  • Energy Storage and Conversion Technology
  • Nanotechnology
  • Sustainability
  • Advanced Materials
  • Renewable Energy

Additional Information


  • Professional Experience
    • Associate Professor, Columbia University, New York, NY, 2019–present
    • Advisor, sHYP, BV PBC, Wilmington, DE, 2022
    • Assistant Professor, Columbia University, New York, NY, 2014–2018
    • NRC Postdoctoral research fellow, National Institute of Standards and Technology, Gaithersburg, MD, 2011-2014
  • Professional Affiliations
    • American Institute of Chemical Engineers
    • Electrochemical Society
    • International Society of Electrochemistry
    • American Chemical Society
    • Tau Beta Pi Engineering Honor Society
  • Honors & Awards
    • NSF CAREER Award, 2018.
    • Advanced Energy Storage Fellow, Scialog, 2017
    • NRC Postdoctoral Fellow, National Institute of Standards and Technology National Research Council
    • Postdoctoral Research Associateship Program, 2011
    • Graduate Fellowship, University of Delaware, Bill N. Baron Fellowship Award, 2010
    • Graduate Fellowship, University of Delaware, NASA Delaware Space Grant College and Fellowship Program, 2008
    • Graduate Fellowship, University of Delaware, Solar Hydrogen IGERT Program, 2006
    • Chandler Award for excellence in Chemical Engineering, Lehigh University, 2004
  • Education
    • PhD, Chemical Engineering, University of Delaware
    • BS, Chemical Engineering, Lehigh University