Updates and Guidance
For operational updates and health guidance from the University, please visit the COVID-19 Resource Guide.
To learn more about our spring term, please visit the Updates for Students page.
For operational updates and health guidance from the University, please visit the COVID-19 Resource Guide.
To learn more about our spring term, please visit the Updates for Students page.
351 Engineering Terrace
Mail Code 8904
Clark Hung pursues multidisciplinary research using state-of-the-art biological and engineering tools to perform studies to investigate physical effects (e.g., cell deformation, fluid flow effects, osmotic pressure) on cells and tissues and the incorporation of these forces in strategies to develop functional cartilage substitutes. An understanding of the effects of physical forces on cells is important in the development of effective tissue replacements that mimic or restore normal tissue structure-function in orthopaedic and other load-bearing tissues of the body. Such studies may lead to strategies aimed at alleviating the most prevalent and chronic problems afflicting the musculoskeletal system such as arthritis and problems related to sports and occupational injuries. His research has been funded by agencies including the National Institutes of Health, National Science Foundation, Department of Defense, and The Musculoskeletal Transplant Foundation. His work has been published in 166 full-length publications and 15 book chapters.
Of particular interest to Hung is the mechanobiology of cartilage and chondrocytes. A better understanding of how cells perceive and respond to applied physical stimuli may provide greater insights to the role that physical forces play in the etiology of degenerative joint disease and osteoarthritis, as well as in normal maintenance of articular cartilage. These studies have formed the underpinning of his lab’s functional tissue engineering efforts using applied physiologic deformational loading and osmotic loading to promote engineered cartilage tissue development in culture. His team also explores the role of other physical forces, including applied electric fields, to guide cell migration in healing or forming tissues as well as to optimize cell sources.
His research has led to four issued US patents, including those describing 1) an engineered osteochondral graft with native functional properties (https://www.google.com/patents/US20100036492), 2) lipid shell microbubbles as porogens for tissue engineering scaffolds (https://www.google.com/patents/US8617892), 3) MOPS preservation media for osteochondral allograft storage (https://google.com/patents/US9220258), 4) chondrogenic media formulation including TMAO (https://www.google.com/patents/US20130202567). MOPS has been licensed by the Musculoskeletal Transplant Foundation and is the storage media for their clinical osteochondral grafts. The media preserves grafts twice as long as the industry standard media, with the benefit of no serum or refrigeration. There is also a patent pending for the methylcellulose suspension technique for cell synchronization utilized in the current project (https://www.google.com/patents/WO2016081742).
Hung received a BSE in biomedical engineering from Brown University in 1990, a MSE in bioengineering in 1992, and a PhD in bioengineering from the University of Pennsylvania in 1995. He is a fellow of the American Institute of Medical and Biological Engineering and American Society of Mechanical Engineers. In 2016 he received the Marshall R. Urist Award for Excellence in Tissue Regeneration Research from the Orthopaedic Research Society.